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Abstract 

As modern technology continues to advance, how can we prevent the human from 

becoming the weakest component of the human-machine system? When operators are 

overwhelmed, judicious employment of automation can be beneficial.  Ideally, a system 

which can accurately estimate current operator workload can make better choices when to 

employ automation.  Supervised machine learning models can be trained to estimate 

workload in real time from operator physiological data.  Unfortunately, estimating 

operator workload using trained models is limited: using a model trained in one context 

can yield poor estimation of workload in another.  This research examines the utility of 

three algorithms (linear regression, regression trees, and Artificial Neural Networks) in 

terms of cross-application workload prediction.  The study is conducted for a remotely 

piloted aircraft simulation under several context-switch scenarios – across two tasks, four 

task conditions, and seven human operators.  

Regression tree models were able to cross-predict both task conditions of one task 

type within a reasonable level of error, and could accurately predict workload for one 

operator when trained on data from the other six. Six physiological input subsets were 

identified based on method of measurement, and were shown to produce superior cross-

application models compared to models utilizing all input features in certain instances. 

Models utilizing only EEG features show the most potential for decreasing 

cross-application error for certain contexts. These findings will contribute to the future 

development of robust workload estimators for use in on-line adaptive aiding systems.  
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ROBUST MODELS FOR OPERATOR WORKLOAD ESTIMATION 
 

I.  Introduction 

General Issue 

As modern technology continues to advance, how can we prevent the human from 

becoming the weakest component of the human-machine system? Recent advances in 

automation technologies make it conceivable for a single human operator to control 

multiple remotely piloted aircraft (RPA) simultaneously, a vast improvement in resource 

utilization compared to existing operations that require several operators per vehicle.  The 

limiting factor of multi-aircraft-control (MAC) is the ability of the operator to 

expediently interpret information and attend to the increased number of time-critical 

subtasks.  Automation can help alleviate operator task load, but it must be applied 

judiciously.  Adaptive aiding is a strategy that uses an estimate of current operator 

workload to decide how and when to best apply automation. Workload is a representation 

of “the cost incurred by a human operator to achieve a particular level of performance” 

which “emerges from the interaction between the requirements of a task, the 

circumstances under which it is performed, and the skills, behaviors, and perceptions of 

the operator” (Hart & Staveland, 1988).  One area of research attempts to infer operator 

workload from operator physiological data, such as electroencephalography (EEG) and 

electrocardiography (ECG). An informed learning model which accurately estimates 

workload can be fitted using these physiological parameters (G. F. Wilson & Russell, 

2004).    
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Problem Statement 

Model generalizability is an important aspect of any potential adaptive aiding 

system: ideally, a continuous workload prediction model would be able to make accurate 

workload estimates over a wide array of mission contexts and personnel.  One potential 

disadvantage of machine learning-based models is that they may perform well in the 

specific contexts in which they were trained, but poorly in other contexts.  If a model is 

not robust, it would require that exhaustive training data be gathered for every possible 

operational scenario and from every new human operator.  From each of these contexts, a 

separate model would need to be fitted and maintained.  Clearly, having to maintain these 

separate models is a non-scalable solution for missions composed of a wide variety of 

operations and operators.  

This research effort examines the cross-applicability of machine learning-based 

models using data from a simulated RPA human performance study. As a proof of 

concept, we compare the cross-applicability of models created using linear regression, 

regression trees, and Artificial Neural Networks to relate workload to human 

physiological data. The models are evaluated in terms of cross-application error under 

several context-switch scenarios – across two tasks, four task conditions (two per task), 

and seven human operators.  

Research Objectives 

The main objective of this research is to identify which of the three algorithms is 

the best candidate for developing robust models for workload estimation for use in a 

single operator RPA adaptive aiding application. This research effort also compares the 
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cross-application error of specific contexts, and examines the effect of reducing the set of 

physiological inputs on cross-application error. 

Investigative Questions 

The following questions outline the investigative trajectory of this research effort. 

The main research question is: 

Can a machine learning-based workload prediction model achieve a reasonable 

standard of cross-application error when applied to a diverse range of experimental 

contexts?   

Specific investigative questions include: 

1. Which algorithm is the best at cross-application workload estimation?  

2. Which algorithm is the best at estimating workload within a specific context? 

3. Are some contexts more generalizable than others? 

4. Can reducing the number of input features significantly decrease cross-

application error?  

Methodology 

This research effort was partially inspired by A Comparison of Artificial Neural 

Networks, Logistic Regressions, and Classification Trees for Modeling Mental Workload 

in Real-Time (Fong, Sibley, Cole, Baldwin, & Coyne, 2010).  Fong, et al. found that 

ANNs and classification trees were significantly better at estimating workload (based on 

three levels of task difficulty) than logistic regression for a numeric recall task. Previous 

research has indicated that supervised learning workload classifiers that detect periods of 

high workload based on physiological input and trigger the automation of key subtasks 
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can significantly improve operator performance in a simulated RPA environment 

(Christensen & Estepp, 2013). More recent efforts have attempted to perform workload 

regression – estimating workload as a numerical parameter from its mathematical 

relationship to operator physiological state parameters (Heger, Putze, & Schultz, 2010). 

Considering workload numerically instead of categorically allows for workload 

prediction models that can potentially estimate workload values from previously unseen 

physiological input data. By representing workload numerically instead of categorically, 

finer-grain automation decisions are possible.  Furthermore, continuously variable (rather 

than categorical) automation can be employed which may better match the needs of the 

operator. A smoother employment of automation may prove even more effective at 

improving performance than previous efforts. This research effort utilizes numeric 

workload profiles generated using the Improved Performance Research Integration Tool 

(IMPRINT), a discrete event network modeling tool (Allender, Kelley, Archer, & 

Adkins, 1997). These profiles were generated with a 1-Hz sample rate from tailored 

IMPRINT models developed for each subject and each task the subject performed.   

Assumptions/Limitations 

This research relies heavily on the assumption that the ascribed workload values 

are an accurate representation of the task load imposed upon subjects at any given time 

during the task period. This research assumes that due care was taken during the 

collection and aggregation of the physiological data, and that subjects performed to the 

best of their ability during all phases of the experiment. 
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Implications 

This research is part of an overall effort on behalf of Air Force Research 

Laboratory’s Human Effectiveness Directorate to develop robust, accurate workload 

estimation models as part of their Sense-Assess-Augment taxonomy for human-centered 

research (Galster & Johnson, 2013). This research will directly contribute to the “Assess” 

portion of the taxonomy, and its success will help pave the way for future implementation 

of adaptive aiding strategies as part of the “Augment” portion.  

Preview 

This chapter outlined the necessity of developing an accurate and robust workload 

estimation model in order to effectively implement adaptive aiding strategies that would 

allow a single operator to control one or more RPA. Chapter II provides a background on 

previous human performance research using supervised learning methods to estimate 

workload from human physiological data. Chapter III outlines specific hypotheses and 

experiments for evaluating the algorithms’ ability to create robust models. Chapter IV 

summarizes and interprets the results of the applied methodology from Chapter III. 

Chapter V evaluates the success of the research objectives, summarizes the results and 

their ensuing conclusions, and makes recommendations towards future avenues of 

inquiry. 
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II. Literature Review 

This chapter provides a background on previous human performance research 

using machine learning to estimate workload from human physiological data. The first 

section describes commonly accepted methods for modeling and measuring workload. 

The second section identifies classes of human physiological response data commonly 

used for workload prediction, and the relative utility of each. The third section discusses 

the mathematical basis of the machine learning algorithms, as well as advantages and 

disadvantages of each. The fourth section addresses adaptive aiding strategies and 

successful implementations. 

Workload Modeling and Measurement  

One definition of workload is a “hypothetical construct that represents the cost 

incurred by a human operator to achieve a particular level of performance” which 

“emerges from the interaction between the requirements of a task, the circumstances 

under which it is performed, and the skills, behaviors, and perceptions of the operator” 

(Hart & Staveland, 1988). Since workload is the product of multiple situational factors, a 

good workload measure must generalize across multiple dimensions and not be specific 

to any particular task environment. Workload can be considered as a single categorical or 

numerical value, or as the summation of multiple sub-values. Multiple resource theory 

divides workload into distinct cognitive channels (visual, auditory, spatial, etc.) based on 

our ability to multitask effectively as long as no one channel is overloaded – e.g. walking 

and talking versus listening to two conversations (Wickens, 1984). 
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Many studies use inherent task difficulty to delineate between workload levels. 

For example, recalling two numbers from working memory may be associated with 

“low” workload, four numbers with “medium” workload, and six numbers with “high” 

workload (Fong et al., 2010). Using this method to train a physiological input-driven 

workload prediction model, the workload level chosen by the model is compared to the 

“true” workload based on predetermined task difficulty. Some studies establish a 

workload baseline by recording physiological data while the operator is looking at the 

task environment but not engaging with it (G. F. Wilson & Russell, 2003).  

Another common method of workload measurement is subjective self-evaluation 

on behalf of the human subject. This method is useful in that it captures the subject’s 

unique perception of task difficulty and reaction to imposed workload. The drawback is 

that surveying the subject usually interferes with the task being performed, so an 

evaluation at the end of the task period is meant to represent the average workload over 

the entire task period. This after-the-fact evaluation is subject to memory bias; the peak-

end rule holds that people judge an experience based largely on its most intense point and 

its end (Kahneman, Fredrickson, Schreiber, & Redelmeier, 1993). The most basic 

assessment of subjective workload is simply asking operators to rate how difficult the 

task was on a numeric scale (Besson et al., 2013; Smith, Gevins, Brown, Karnik, & Du, 

2001). One of the most commonly used workload surveys is the NASA Task Load Index 

(TLX), which incorporates multiple sources of workload in accordance with multiple 

resource theory (Hart & Staveland, 1988). The NASA TLX presents six workload 

subscales (Mental Demand, Physical Demand, Temporal Demand, Performance, Effort, 
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and Frustration) that the operator rates, then weights the results based on perceived 

importance to produce an overall workload rating on a 0 to 100 scale.  

Another multiple resource theory-based workload representation is the Visual, 

Auditory, Cognitive, and Psychomotor (VACP) scale (McCracken & Aldrich, 1984). 

Component rating scales were developed by surveying a range of human factors experts 

using lists of matched verbal anchor pairs and having them indicate, for each pairing, 

which verb required a higher level of effort. The pair comparison frequencies were then 

used to develop interval scale values for each VACP component. The VACP scale was 

later expanded to 7 components, including speech and tactile components, and divided 

the psychomotor component into separate fine motor and gross motor components (Little 

et al., 1993). A table depicting the exapanded VACP rating scales with anchoring 

statement text descriptions can be found in Appendix A. Higher scale values indicate a 

greater degree of use of the resource component.  

Classes of Physiological Inputs 

Physiological measures are a useful indicator of workload because they are less 

interruptive than secondary task measures or subjective surveys, do not require the 

measurement of overt performance, and are inherently multidimensional and therefore 

can be expected to provide multiple views of operator workload (Kramer, 1990). 

Physiological metrics also offer continuous monitoring and may respond quickly to shifts 

in workload. The most widely used physiological data inputs typically fall into one of 

four categories: neurological activity, ocular activity, cardiopulmonary activity, and other 

(skin conductance, body temperature, passive drool, etc.). Many studies collect and 
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integrate multiple categories of data in order to enhance the accuracy of their workload 

prediction models. 

Electrical activity in the brain is typically measured via electroencephalography 

(EEG) using a series of electrodes placed on twenty-one cranial locations and separated 

into six frequency bands between 0 and 40 Hz. Kamzanova, Kustubayeva and Matthews’ 

research indicates that alpha-1 band (8-10.9 Hz) EEG activity increases as operator 

attention decreases during a vigilance task (long periods of observing an unchanging 

environment with infrequent target stimuli) (Kamzanova, Kustubayeva, & Matthews, 

2012). Furthermore, the alpha-2 band (11-13.9 Hz) remains relatively constant in tasks 

that only require identifying target stimuli and not recalling information from working 

(short term) memory. Yin and Zhang identified theta (4-7 Hz) and gamma (32+ Hz) EEG 

bands as most salient to changes in workload (Yin & Zhang, 2014).  

A variety of ocular data metrics can be calculated in real-time, such as percentage 

pupil closure (PERCLOS), raw eyelid closure, fixation duration, saccade duration, 

saccade velocity, saccade frequency, blink frequency, blink duration, and pupil diameter. 

There is no definitive scientific agreement as to which eye metric works best for 

workload assessment (Halverson, Estepp, Christensen, & Monnin, 2012). The majority of 

studies suggest that pupil size is the most effective ocular metric in an experimental 

setting, although it may prove less effective in real-world contexts where lighting can 

vary dramatically.  Marshal demonstrated that eye metrics (blink duration, saccade 

frequency, and divergence) can be used to effectively discriminate between different 

cognitive states (relaxed versus engaged, focused versus distracted, and rested versus 

fatigued) with an average accuracy upwards of 70 percent across trials. (Marshall, 2007). 
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Van Orden, Limbert, Makeig, and Jung examined changes in eye metrics (blink 

frequency and duration, fixation frequency and dwell time, saccadic extent, and mean 

pupil diameter) as a function of task workload in a target identification memory task (Van 

Orden, Limbert, Makeig, & Jung, 2001). Nonlinear regression analysis found blink 

frequency, fixation frequency, and pupil diameter to be the most salient variables. 

Halverson, et al. also found pupil diameter and PERCLOS to be highly correlated with 

workload (Halverson et al., 2012). Fong, Sibley, Cole, Baldwin, and Coyne identified 

pupil divergence as the most salient input factor and more indicative of workload than 

either pupil diameter or fixation frequency (Fong et al., 2010). Wilson and Russell 

observed a strong correlation between electrooculography (EOG, the vertical or 

horizontal measurement of corneo-retinal standing potential) and workload in their Air 

Force Multi-Attribute Task Battery study (G. F. Wilson & Russell, 2003).  

Cardiopulmonary measures are the least often utilized physiological metric, 

although they are often collected and integrated with EEG and EOG for completeness. 

Nikolova suggested that heart rate variability is a sensitive measure for examining mental 

effort, work stress, and operator functional state, and is actually more indicative of 

workload than actual or intrinsic heart rate (Nikolova, 2002). There is also evidence to 

suggest that heart rate could be highly representative of the gradual accumulation of 

fatigue (Yin & Zhang, 2014).  

Regression Algorithms 

This research effort compares the robustness of models created using three 

different supervised learning algorithms – linear regression, regression trees, and artificial 
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neural networks. Linear regression is an estimation of the linear function relating an 

independent input variable (or variables) to a dependent numeric output that minimizes 

the difference between observed and predicted output (Alpaydin, 2010). The relation can 

be expressed as  

𝒀 = 𝑿𝑾 + 𝝐                (1) 

Where 

Y = the vector of output values of length p 

X = the n × p matrix of input values 

W = the input weight vector of length p 

ɛ = the vector of zero mean Gaussian noise parameters of length n 

n = the number of samples 

p = the number of inputs 

The expression is then solved for the W that minimizes the sum of the squared residuals. 

This is can easily be achieved by QR decomposition. Linear regression is an extremely 

simple means of performing a workload regression from physiological data. It is less time 

and memory intensive than the other two algorithms, and inferences about feature 

saliency can be easily drawn from the coefficient values of the resulting linear equation. 

The disadvantage of linear regression is that it oversimplifies the complex, often 

nonlinear relationship between workload and physiological data, and is less adept at 

predicting workload for new data. 

A more versatile method for modeling regression as a nonlinear relation is the 

regression tree. Regression trees are constructed by analyzing all the input features and 
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determining which binary division of a single input feature best reduces the mean squared 

error of output prediction (Lawrence & Wright, 2001). The process is repeated for each 

portion of the data resulting from the first split until a stopping condition (such as 

minimum residual or samples per terminal node) is met, resulting in a hierarchical tree of 

uniquely defined nodes. Regression trees are more time and memory intensive than linear 

regression, but more adept at handling outlier data and predicting workload for new data 

samples. The disadvantage of regression trees is that they can be sensitive to small 

changes in the training data; eliminating even a few samples can result in radical changes 

in tree size and branch conditions. Furthermore, regression tree branch splits only 

consider one input feature at a time, and can overlook inherent relationships or 

dependencies that exist between features. 

An Artificial Neural Network (ANN) is a directed graph that utilizes nonlinear 

transformation functions contained in “hidden” nodes connecting the input layer to the 

output layer that model the action potentials displayed by neurons in the brain. Using one 

or more hidden layers detects the salience of the input features by performing a nonlinear 

transformation on the input data into a feature space where the output data may become 

more easily separable (Haykin, 2009). An ANN learns the relation between input and 

output by iteratively adjusting the network edge weights according to the difference 

between the predicted output of a training sample and its true output value (Hagan & 

Menhaj, 1994). ANN training occurs in two phases – in the forward phase, the input 

signal is propagated through the network, layer by layer, until it reaches the output, which 

is a function of the edge weights and the neuron transfer functions. In the backward 

phase, an error signal is calculated by comparing the generated output to the desired 
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value, and then propagating the error backwards through the network, adjusting the 

weights appropriately. ANNs are adept at learning complex, nonlinear relationships and 

have a high tolerance for noisy data. However, neural networks rely on a substantial 

amount of training data for solution convergence, are time intensive, and obfuscate how 

individual features relate to workload. Penaranda and Baldwin demonstrated that neural 

networks can be used for robust workload prediction across both task and temporal shifts 

(Penaranda & Baldwin, 2012).  

Adaptive Aiding 

The ultimate goal of accurate workload estimation is to sense suboptimal 

workload levels and effectively adjust the current level of automation before performance 

is negatively affected (G. F. Wilson & Russell, 2003). Adaptive aiding implies adjusting 

the level of automation when current workload is “not at its optimal or desired levels by 

implementing proper adaptation strategies that can accommodate the differences” (Yoo, 

2012). Adaptive aiding is achieved by reallocating tasks using three different allocation 

strategies. In complete allocation, functions are either completely controlled by the 

human operator or completely automated. In partial allocation, a function may be 

partially automated by applying fixed levels of automation, which should be 

appropriately selected to match the need of situational demands made on human 

capabilities. In gradual allocation, the level of automation is increased or decreased 

gradually until the demands are sufficiently satisfied. Considering workload numerically 

instead of categorically allows for workload prediction models that are better suited for 

applying gradual allocation, which may better match the needs of the operator. A 
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smoother employment of automation adjustment may prove even more effective at 

improving performance than previous efforts. 

Christensen and Estepp examined the efficacy of applied adaptive aiding in a 

multiple remotely piloted aircraft (RPA) simulation environment (Christensen & Estepp, 

2013). The study featured 10 participants monitoring the progress of RPA on two abutted 

computer screens as they flew a preplanned mission, with the performance metric equal 

to the percentage of targets successfully engaged. Automation consisted of changing the 

user interface to emphasize priority as well as automatically linking RPA to targets and 

displaying target images. The effectiveness of activating automated assistance via 

physiological feedback was tested against manual activation by the user and no 

automation. The adaptive aiding produced significantly improved performance (90 

percent of targets successfully engaged) compared to manual aiding (84 percent) and no 

aiding (82 percent). Wilson and Russell utilized an ANN online workload classifier to 

remove the monitoring and communication tasks from the Air Force Mutli-Attribute Task 

Battery when the classifier detected high workload, resulting in a 44 percent reduction in 

tracking task error compared to the nonadaptive condition (G. F. Wilson & Russell, 

2003). In a similar study, Wilson and Russell used an ANN workload classifier to trigger 

adaptive aiding in a simulated RPA environment, which improved individual 

performance by 50 percent compared to automation that was randomly asserted. (G. F. 

Wilson & Russell, 2007). Although past research suggests that adaptive aiding can 

significantly improve operator performance, it has also been shown that the incorrect 

application of automation can degrade performance (Kaber, Wright, Prinzel, & Clamann, 

2005); (Dixon, Wickens, & Chang, 2004). Therefore, great care must be taken to ensure 
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that adaptive aiding systems are designed to adjust automation when and how it is most 

beneficial to the operator.  

Summary 

There are several accepted methods for representing and estimating workload, 

each with its own advantages and disadvantages. Past research indicates that there is no 

single physiological metric that is most effective for real-time workload estimation in all 

cases – a broad range of physiological data across multiple spectrums offers the most 

possible information about current operator state. It has also been shown that using 

physiologically-driven workload classifiers for adaptive aiding can significantly improve 

operator performance. Using machine learning for regression to create accurate and 

robust workload estimation models that can apply more nuanced adaptive aiding policies 

may prove even more effective at improving operator performance. 
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III. Methodology 

The primary goal of this research effort is to investigate the robustness of machine 

learning-based workload prediction models in terms of cross-application error for a 

variety of experimental contexts. A more in depth view of the experimental dataset is 

shown, including a detailed description of the study, how the physiological data was 

aggregated, and how the workload time-series were generated. Specific hypotheses about 

model cross-application performance are posed, as well as descriptions of the 

experiments and statistical tests used to investigate those hypotheses. It should be noted 

that this research effort has the benefit of approaching the problem of workload 

estimation in on off-line environment, after the physiological data has been analyzed and 

aggregated and the associated workload profiles carefully generated by respective subject 

matter experts. However, examining how well machine learning-based models trained in 

one context can estimate workload in another context should yield valuable information 

towards the future development of robust on-line workload estimators for use in adaptive 

aiding systems.  

Data Set 

This research effort examined physiological data from an Air Force Research 

Laboratory (AFRL) human performance study, which monitored fourteen participants 

completing a series of simulated remotely piloted aircraft (RPA) operation tasks 

(Courtice et al., 2012). This study is part of an overall effort on behalf of the Human 

Effectiveness Directorate to develop accurate predictive workload models as part of the 

Sense-Assess-Augment taxonomy for human-centered research (Galster & Johnson, 
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2013). The goal of the study was to quantify cognitive states of RPA operators using a 

variety of physiological measures. The primary task environment was an RPA simulation 

environment utilizing two inter-coordinated software tools; the Vigilant Spirit Control 

Station (VSCS), which simulates the instrument and display panels used to manipulate 

the RPA’s optical camera throughout a given mission, and the Multi-Modal 

Communication (MMC) tool used for sending audio prompts and receiving responses as 

a secondary task measure. Figure 1 depicts a screenshot of a typical VSCS task 

environment.  

 
Figure 1 Operator’s View of Task Environment (Courtice et al., 2012) 

In the experimental scenarios, operators performed a simulated RPA mission that 

involved operating the RPA’s optical camera within the simulated airspace and 

performing ‘Surveillance’ or ‘Tracking’ tasks. The object of the Surveillance task was to 

monitor a marketplace and attempt to locate four high value targets (HVTs).  Each HVT 

carries an AK-47 rifle, as opposed to non-target distractors that carry a handgun, shovel, 

or nothing. Operators search the market by clicking where they desire the camera to 

center, and zooming in and out with the mouse scroll wheel to determine whether a 
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person is the HVT or a distractor.  Once found, the HVT is tracked until he walks under 

one of twenty tents in the market, at which point the operator begins looking for the next 

HVT.  Independent variables in the Surveillance task include the number of distractors 

(high or low), and visual sensor fuzz (either absent or present).  

When the Surveillance task ended, operators had three minutes to complete the 

NASA-TLX questionnaire before the Tracking task began. Thirty seconds into the 

Tracking task, the first HVT walks out from underneath a tent and begins walking to a 

different tent where he gets on a motorcycle. The operator attempts to track the HVT as it 

leaves the market on the motorcycle and rides to a new location.  In half of the trials, a 

second HVT leaves in a similar manner, thirty seconds after the first, and must also be 

tracked.  If a HVT is lost, operators are instructed to zoom out and search the surrounding 

area in order to reacquire the HVT.  In half of the trials the HVTs travel along urban 

roads and in the other half they travel along rural roads. Independent variables in the 

tracking task include number of HVTs (one or two) and route (urban or rural).  Each 

operator completed 4 sessions of testing, with 4 trials per session, such that each subject 

experienced every combination of task conditions 4 times. Over the course of each trial, 

subjects completed a recurring secondary task by responding verbally to a question 

requiring them to perform simple mental arithmetic.  

 During the aforementioned scenarios, physiological data was collected from each 

of the operators using two monitoring systems; the CleveMed BioRadio 150 and the 

Smart Eye Pro. The BioRadio received electroencephalography (EEG) and 

electrooculography (EOG) inputs from the BioSemi ActiveTwo electrode skullcap, and 

electrocardiography (ECG) and respiration data from sensor electrodes placed on the 
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chest. The Smart Eye Pro utilized four infrared cameras and two infrared illuminators to 

capture highly detailed pupilometery data. This research effort examines 66 physiological 

features, including 56 EEG measures, 2 EOG measures, 2 ECG measures, 2 respiration 

measures, and 4 pupilometery measures. A table annotating the physiological features 

can be found in Appendix C.   

The raw time-series physiological data was recorded at varying sensor rates.  EEG 

and EOG data were recorded at 480 Hz. The EEG data underwent spectral analysis by 

AFRL, during which it was downsampled to 1Hz power spectral density values. The 

EOG data was analyzed for blinks and saccades and post-processed into a common 1 Hz 

sample rate. Fixation and blinkrate values were determined by counting the number of 

blinks or saccades in a 60-second rolling window. Respiration data was collected at 

approximately 18Hz, and fit with cubic splines in order to downsample to 1Hz. 

Pupillometry and ECG data were collected at approximately 60Hz and 1.5Hz, 

respectively, and aggregated using the same process as the respiration data.   

Time-series workload profiles were developed using the Improved Performance 

Research Integration Tool (IMPRINT). Analysts determined start and end points for each 

subject’s actions during the experiment, then used IMPRINT to model each trial as a 

series of discrete events at a sampling rate of 1 Hz. Each discrete event was then assigned 

expanded Visual Auditory Cognitive Psychomotor (VACP) workload values according to 

the level of work that each workload channel experienced at that second. Workload 

values were assigned according to a version of the expanded VACP scale adapted 

specifically for the study, which can be seen in Appendix B. Overall workload, the sum 

of the visual, auditory, cognitive, fine motor, and speech channel values, is used as the 
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predictive variable for training and testing the machine learning algorithms. Figure 2 

shows a workload profile for a surveillance task trial.  

 
Figure 2 Workload Profile Example 

The auditory workload spikes correspond to the secondary task questions, which 

occurred at regular intervals. The cognitive, fine motor, and speech workload spikes vary 

between trials according to how long it took subjects to respond to the prompts. As is 

often the case with human subject testing, some of the subject data was discarded due to 

subject or measurement issues; only data from subjects 2, 4, 5, 7, 8, 12, and 13 is 

considered in this analysis.  

Testable Hypotheses  

The primary focus of this research effort is to investigate the robustness of 

workload estimation models created using three supervised learning algorithms for 

regression. Models are evaluated in terms of root mean squared error (RMSE) to give an 

impression of the average error of a particular configuration in units of workload. Every 
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data sample from the study falls into a particular context: the task (Surveillance or 

Tracking), the task conditions (fuzz or no fuzz and high or low distractors for 

Surveillance, 1 or 2 HVT and urban or rural egress route for Tracking), and the subject 

(one of seven human operators). Ideally, a workload estimation model would be flexible 

enough so that it could estimate workload for samples outside of its training context just 

as well as it could estimate workload for samples inside its training context. Suppose that 

data from one particular context A is used to train a workload estimation model. The 

model is then used to estimate workload for previously unseen data from context A 

resulting in some root mean squared error EA→A. Then the model is used to estimate 

workload for data from the opposing context B, resulting in some root mean squared error 

EA→B. The process is then repeated, this time training a model on context B, resulting in a 

roots mean squared error EB→B and EB→A. This research will test the hypotheses  

𝑯𝟏:𝑬𝑨→𝑨 <  𝑬𝑨→𝑩 
𝑬𝑩→𝑩 < 𝑬𝑩→𝑨 

     (2) 

against the null hypotheses 

𝑯𝟎:𝑬𝑨→𝑨 =  𝑬𝑩→𝑨 
𝑬𝑩→𝑩 = 𝑬𝑨→𝑩 

     (3) 

This hypothesis will be tested by comparing the distributions of RMSEs generated over 

40-fold cross-validation (see Figure 3). The sample distribution of RMSEs can be 

assumed to be normal (by the central limit theorem), a requirement for the Student’s 

t-test. In this research effort, null hypotheses will be rejected on a 95 percent confidence 

level, that is, if the p-value of a t-test is < 0.05, meaning a less than 5 percent chance of 

achieving those results by coincidence. 
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Figure 3 40-Fold Cross-validation 

This research effort will test cross-application for three context categories – task 

type (Surveillance versus Tracking), task conditions (fuzz versus no fuzz, high distractors 

versus low distractors, 1 HVT versus 2 HVT, urban route vs rural route), and human 

subjects (6 subjects versus 1 individual subject). The desired outcome of these tests is 

failure to reject the null hypothesis on a 95 percent confidence level, indicating that a 

machine learning-based workload estimation model trained under one particular context 

can estimate workload for samples from the same context and the opposing context with 

approximately equal accuracy. 

The cross-application RMSEs will also be compared against Eμ, the RMSE of a 

trivial predictor that ignores the physiological data completely and simply guesses the 

mean workload value of the training set for every sample of the testing set, specific to 

one context. 
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𝑬𝝁 =  �
∑ (𝑾𝒊−𝑾𝝁)𝟐𝒏
𝒊=𝟏

𝒏
      (4) 

Where 

Eμ = the root mean squared error of the trivial predictor 

Wμ = the mean workload value of the training set 

Wi = the ith workload value of the testing set 

n = the number of samples in the testing set  

Even if a model performs poorly at cross-application, it would be expected to at least 

outperform such a trivial predictor. This research will test the hypothesis  

𝑯𝟏:
𝑬𝑨→𝑩 <  𝑬𝝁(𝑩)→𝑩 
𝑬𝑩→𝑨 <  𝑬𝝁(𝑨)→𝑨 

     (5) 

against the null hypothesis 

𝐻0:
𝐸𝐴→𝐵 =  𝐸𝜇(𝐵)→𝐵 
𝐸𝐵→𝐴 =  𝐸𝜇(𝐴)→𝐴 

     (6) 

The desired outcome of these tests would be the rejection of the null hypothesis on a 95 

percent confidence level, indicating that a machine learning-based workload estimation 

model trained under a specific context can estimate workload for samples from the 

opposing context with significantly less error than simply guessing the mean workload 

value for opposing context samples. 

A secondary aim of this research effort is to investigate the effect of reducing the 

set of physiological inputs on cross-application error. Limiting the size and scope of the 

necessary physiological monitoring device helps to minimize both interference to the 
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operator and overall system lifecycle cost. The physiological data can be logically 

separated into four subsets based on how they were collected; EEG (from the electrode 

skullcap), EOG (from sensors extending from the skullcap placed around the eyes), 

Cardiopulminary (heart rate and respiration data from the chest sensors), and Pupilomtery 

(from the Smart Eye camera system). These subsets may be further grouped together into 

Skullcap (EEG and EOG), and BioRadio (Skullcap and Cardiopulminary), as the 

inclusion of one subset makes the other readily available. Although it might be assumed 

that having more input information would result in better model cross-application 

performance, it is also possible that discarding some features might enhance model 

robustness by relaxing the learned policy. This research will test the hypothesis  

𝑯𝟏: 𝑬𝒔 <  𝑬𝑺      (7) 

against the null hypothesis 

𝐻0: 𝐸𝑠 =  𝐸𝑆      (8) 

where E is the aggregation of both cross-application RMSEs EA→B and EB→A, S is the a 

model utilizing all 66 available input features, and s is a model utilizing only the features 

included in one of the six identified subsets. The desired outcome of these tests would be 

the rejection of the null hypothesis on a 95 percent confidence level, indicating that cross-

application error for a particular set of contexts can be significantly reduced using a 

subset of the input features. Although finding the optimal subset of all input features that 

minimizes cross-application error is nontrivial, it is beyond the scope of inquiry for this 

research effort. 
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Algorithm Specifications               

 Specific design choices were made in regards to the regression tree and ANN 

models with intent to enhance their robustness. Constructing a single regression tree 

using all the training data will usually over-fit the model, hampering its robustness 

(Lawrence & Wright, 2001). The risk of over-fitting a tree is reduced by employing a 

pruning scheme during 10-fold cross validation (generating ten trees from different 

subsets of 90 percent of the training data and validating on the remaining 10 percent). 

The bottom-most tree nodes are then iteratively removed until a minimal mean validation 

error across all ten trees is reached.  The optimal pruning level is then applied to the 

original full tree. 

ANN models are trained according to the Levenberg-Marquardt algorithm (see 

Appendix D). During each training epoch for an ANN model, 10 percent of the training 

data is randomly selected as a holdout validation set. Training continues until a maximum 

of 100 training epochs is reached, or the validation error increases for six consecutive 

epochs. This research effort utilizes a single hidden layer of 10 nodes for all ANN 

models. Although the optimization of the size and number of hidden layers and other 

training parameters is nontrivial, it is beyond the scope of enquiry for this research effort.   

Summary 

This research effort seeks to utilize supervised learning regression algorithms to 

relate a broad array of physiological data to operator workload for a simulated RPA 

reconnaissance task. It is hypothesized that a robust workload estimation model cannot 

estimate workload for samples outside of its training context as well as it can estimate 
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workload for samples inside its training context. It is hypothesized that a robust workload 

estimation model can estimate workload for samples outside of its training context better 

than a trivial predictor that ignores physiological input. It is also hypothesized that a 

model utilizing a natural subset of physiological input features will have significantly 

lower cross-application error than a model utilizing all available physiological input 

features. These hypothesis are tested by comparing the distributions of RMSE generated 

over 40-fold cross-validation. 
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IV. Analysis and Results 

 This chapter illustrates the results of the hypothesis tests based on a statistical 

comparison of the RMSEs generated over 40-fold cross-validation. Cross-application 

error is compared to self-application error and trivial predictor error for tasks, conditions, 

and subjects. A secondary evaluation of cross-application error investigates the effect of 

reducing the set of physiological input features to one of six defined subsets.   

Task Cross-Application  

Figure 4 shows the distributions of RMSE for the cross-application of 

Surveillance and Tracking data. On the y-axis, the letter to the left of the arrow indicates 

the type of data a model was trained on, and the letter to the right of the arrow indicates 

the type of data tested on. The horizontal dashed lines visually separate the results of the 

three models and the trivial predictors. The solid vertical lines indicate the respective 

RMSE means of the trivial predictors. 
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Figure 4 Task Cross-Application RMSE 

As hypothesized, self-application (T→T, S→S) RMSE was significantly less than cross-

application (T→S, S→T) RMSE for all three algorithms (p<0.01). No cross-application 

RMSE was significantly less than its respective trivial predictor RMSE (p>0.99). A 

summary of the results can be seen in Table 1. A bolded value indicates the null 

hypothesis could be rejected at a 95 percent confidence level. 

Table 1 Task Cross-Application Mean RMSE Comparison 
 EA→A - EA→B EA→B - Eμ(B)→B  EB→B - EB→A EB→A - Eμ(A)→A 

Linear 
Regression 

-4.84 1.46  -8.56 10.29 

Regression 
Tree 

-5.82 1.06  -5.99 4.54 

ANN -5.13 1.71  -3.98 3.82 

A: Surveillance  B: Tracking  Bold: p-value<0.05 
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Figure 5 shows the distributions of task cross-application RMSE for the three 

algorithms relative to the 6 identified feature subsets. The vertical lines indicate the mean 

cross-application RMSE of the model utilizing all available features.   

 
Figure 5 Task Cross-Application RMSE Relative to Input 

Utilizing the EEG subset of features significantly reduced cross-application RMSE for all 

three algorithms, as did the EOG subset. A summary of the results can be seen in Table 2. 

Table 2 Task Cross-Application Mean RMSE Relative to Input Comparison 

 EAll - 
EBioRadio 

EAll - 
ESkullcap 

EAll - 
EEEG 

EAll - 
ECardio 

EAll - 
EPupil 

EAll - 
EEOG 

Linear 
Regression 

4.22 5.33 5.35 1.54 -35.60 5.28 

Regression 
Tree 

0.22 0.19 0.21 0.42 -0.47 0.47 

ANN 0.39 0.41 0.64 0.68 0.50 0.53 

Bold: p-value<0.05 
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Condition Cross-Application  

Figure 6 shows the distributions of RMSE for the cross-application of fuzz (F) 

and no fuzz (NF) condition data from the Surveillance task.  

 
Figure 6 Fuzz Cross-Application RMSE 

The results indicate that self-application RMSE was significantly less than 

cross-application RMSE for all algorithms (p<0.01). Linear regression cross-application 

RMSE was not significantly less than trivial predictor RMSE (p=0.43, 1.00), nor was 

ANN cross-application RMSE significantly less than trivial predictor RMSE (p=1.00, 

0.99). A summary of the results can be seen in Table 3. 
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Table 3 Fuzz Cross-Application Mean RMSE Comparison 
 EA→A - EA→B EA→B - Eμ(B)→B  EB→B - EB→A EB→A - Eμ(A)→A 

Linear 
Regression 

-0.07 -0.01  -1.12 1.07 

Regression 
Tree 

-0.32 -1.13  -0.33 -0.97 

ANN -0.20 0.10  -0.41 0.28 

A: No Fuzz  B: Fuzz  Bold: p-value<0.05 

Figure 7 shows the distributions of fuzz versus no fuzz cross-application RMSE 

for the three algorithms relative to the 6 identified feature subsets.

 

Figure 7 Fuzz Cross-Application RMSE Relative to Input 

The linear EOG features model displayed the largest improvement in RMSE compared to 

the all-features model (p=0.03). A summary of the results can be seen in Table 4.  

Table 4 Fuzz Cross-Application Mean RMSE Relative to Input Comparison 

 EAll - 
EBioRadio 

EAll - 
ESkullcap 

EAll - 
EEEG 

EAll - 
ECardio 

EAll - 
EPupil 

EAll - 
EEOG 

Linear 
Regression 

0.08 0.89 0.90 -0.09 0.69 0.91 

Regression 
Tree 

-0.04 -2.20 -2.18 0.04 -1.93 -1.60 

ANN 0.05 0.11 0.16 0.17 0.20 0.17 

Bold: p-value<0.05 

Figure 8 shows the distributions of RMSE for the cross-application of high 

distractor (H) and low distractor (L) condition data from the Surveillance task.  
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Figure 8 Distractors Cross-Application RMSE 

Self-application RMSE was not significantly less than cross-application RMSE, with one 

exception for the linear model (p=0.999). Only the regression tree model was able to 

cross-estimate with significantly less error than the trivial predictors (p<0.01). A 

summary of the results can be seen in Table 5.  

Table 5 Distractors Cross-Application Mean RMSE Comparison 
 EA→A - EA→B EA→B - Eμ(B)→B  EB→B - EB→A EB→A - Eμ(A)→A 

Linear 
Regression 

-0.32 0.08  0.07 0.05 

Regression 
Tree 

-0.79 -1.01  -0.55 -0.83 

ANN -0.34 0.06  -0.14 0.20 

A: Low Distractors  B: High Distractors  Bold: p-value<0.05 
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Figure 9 shows the distributions of high distractors versus low distractors 

cross-application RMSE for the three algorithms relative to the 6 identified feature 

subsets. 

 

Figure 9 Distractors Cross-Application RMSE Relative to Input 

Utilizing the Cardiopulmonary subset of features significantly reduced cross-application 

RMSE for both the regression tree (p=0.00) and ANN algorithms (p=0.01) compared to 

their respective all-features models. A summary of the results can be seen in Table 6. 

Table 6 Distractors Cross-Application Mean RMSE Comparison 

 EAll - 
EBioRadio 

EAll - 
ESkullcap 

EAll - 
EEEG 

EAll - 
ECardio 

EAll - 
EPupil 

EAll - 
EEOG 

Linear 
Regression 

0.05 0.04 0.05 0.04 -0.02 0.04 

Regression 
Tree 

-0.01 -1.46 -1.46 0.63 -1.19 -0.82 

ANN -0.01 0.03 0.05 0.09 0.09 0.07 

Bold: p-value<0.05 
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Figure 10 shows the distributions of RMSE for the cross-application of 1 HVT (1) 

and 2 HVT (2) condition data from the Tracking task. 

 
Figure 10 HVT Cross-Application RMSE 

The results indicate that self-application RMSE was significantly less than 

cross-application RMSE for all algorithms (p<0.01). It is also indicated that 

cross-application RMSE was not significantly less than trivial predictor RMSE for any 

algorithm (p=1.00). A summary of the results can be seen in Table 7. 

Table 7 HVT Cross-Application Mean RMSE Comparison 
 EA→A - EA→B EA→B - Eμ(B)→B  EB→B - EB→A EB→A - Eμ(A)→A 

Linear 
Regression 

-8.76 8.64  -9.92 9.87 

Regression 
Tree 

-10.46 8.52  -10.42 8.55 

ANN -8.51 8.26  -6.90 6.80 

A: 1 HVT  B: 2 HVT  Bold: p-value<0.05 
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Figure 11 shows the distributions of 1 HVT versus 2 HVT cross-application 

RMSE for the three algorithms relative to the 6 identified feature subsets. 

 

Figure 11 HVT Cross-Application RMSE Relative to Input 

The largest significant decrease in cross-application RMSE is attributed to the linear 

regression model utilizing the EEG subset of input features (p=0.03). A summary of the 

results can be seen in Table 8. The linear regression model using only Pupilometry 

features also yielded a significantly lower cross-application RMSE than the all-features 

model (p=0.03).  

Table 8 HVT Cross-Application Mean RMSE Comparison 

 EAll - 
EBioRadio 

EAll - 
ESkullcap 

EAll - 
EEEG 

EAll - 
ECardio 

EAll - 
EPupil 

EAll - 
EEOG 

Linear 
Regression 

-0.91 0.16 0.48 0.26 0.46 -0.37 

Regression 
Tree 

0.01 -0.01 -0.50 -0.05 -0.28 0.21 

ANN -0.16 -0.49 -1.26 -1.45 -1.25 -0.69 

Bold: p-value<0.05 
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Figure 12 shows the distributions of RMSE for the cross-application of urban (U) 

and rural (R) condition data from the Tracking task.  

 
Figure 12 Route Cross-Application RMSE 

The results indicate that self-application RMSE was significantly less than 

cross-application RMSE for all algorithms (p<0.01). It is also indicated that 

cross-application RMSE was significantly less than trivial predictor RMSE for all 

algorithms algorithm (p<0.01). A summary of the results can be seen in Table 9. 

Table 9 Route Cross-Application Mean RMSE Comparison 
 EA→A - EA→B EA→B - Eμ(B)→B  EB→B - EB→A EB→A - Eμ(A)→A 

Linear 
Regression 

-0.98 -0.80  -0.54 -1.16 

Regression 
Tree 

-0.55 -3.97  -2.11 -3.08 

ANN -0.47 -2.82  -1.10 -2.38 

A: Rural  B: Urban  Bold: p-value<0.05 
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Figure 13 shows the distributions of urban versus rural cross-application RMSE 

for the three algorithms relative to the 6 identified feature subsets. 

 

Figure 13 Route Cross-Application RMSE Relative to Input 

The results indicate that none of the models utilizing an input feature subset significantly 

reduced cross-application RMSE compared to the all-features models. A summary of the 

results can be seen in Table 10. 

Table 10 Route Cross-Application Mean RMSE Comparison 

 EAll - 
EBioRadio 

EAll - 
ESkullcap 

EAll - 
EEEG 

EAll - 
ECardio 

EAll - 
EPupil 

EAll - 
EEOG 

Linear 
Regression 

-0.13 -0.03 -0.20 -0.98 -0.72 -0.76 

Regression 
Tree 

0.06 -1.78 -4.07 -4.35 -4.84 -1.34 

ANN -0.02 -0.09 -1.86 -2.64 -2.33 -0.216 

Bold: p-value<0.05 
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Subject Cross-Application  

Figure 14 shows the distributions of RMSEs for the cross-application of data from 

6 subjects and data from 1 subject. On the y-axis, “6” indicates data from 6 subjects and 

“1” indicates data from 1 subject. 

 
Figure 14 Subject Cross-Application RMSE 

The results indicate that self-application RMSE was significantly less than 

cross-application RMSE for all algorithms (p<0.01). No cross-application RMSE was 

significantly less than the trivial predictor RMSE, with the exception of the regression 

tree 6→1 models (p<0.01). A summary of the results can be seen in Table 11. 
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Table 11 Subject Cross-Application Mean RMSE Comparison 
 EA→A - EA→B EA→B - Eμ(B)→B  EB→B - EB→A EB→A - Eμ(A)→A 

Linear 
Regression 

-0.95 0.06  -9.31 8.04 

Regression 
Tree 

-2.12 -0.65  -3.79 0.76 

ANN -1.61 -0.11  -3.44 1.40 

A: 6 Subjects  B: 1 Subject  Bold: p-value<0.05 

Figure 15 shows the distributions of 6 subjects versus 1 subject cross-application 

RMSE for the three algorithms relative to the 6 identified feature subsets. 

 

Figure 15 Subject Cross-Application RMSE Relative to Input 

The results indicate that utilizing the Skullcap and Pupilometry feature subsets 

significantly reduced cross-application RMSE for both the linear regression and ANN 

algorithms (p<0.01). The largest decrease in cross-application RMSE was attributed to 

the linear model utilizing the EEG features subset (p=0.002). A summary of the results 

can be seen in Table 12. 
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Table 12 Subject Cross-Application Mean RMSE Comparison 

 EAll - 
EBioRadio 

EAll - 
ESkullcap 

EAll - 
EEEG 

EAll - 
ECardio 

EAll - 
EPupil 

EAll - 
EEOG 

Linear 
Regression 

0.91 2.04 4.03 2.27 2.12 0.54 

Regression 
Tree 

0.16 -0.98 -1.73 -0.50 -1.78 -0.39 

ANN 0.04 0.418 0.08 -0.02 0.51 -0.88 

Bold: p-value<0.05 

 

Table 13 shows a comparison of the self-application RMSEs to cross-application RMSEs 

for all algorithms across all contexts.  

Table 13 Mean RMSE Comparison 

 
Linear Regression Regression Tree ANN 

Self 
Error 

Cross 
Error ∆ Self 

Error 
Cross 
Error ∆ Self 

Error 
Cross 
Error ∆ Avg. ∆ 

Surveillance 3.22 8.06 -4.84 1.83 7.66 -5.82 3.18 8.31 -5.13 -5.26 

Tracking 5.00 13.57 -8.56 1.83 7.82 -5.99 3.13 7.11 -3.98 -6.18 

Fuzz 3.21 3.28 -0.07 1.82 2.15 -0.32 3.19 3.39 -0.20 -0.20 

No Fuzz 3.22 4.34 -1.13 1.96 2.30 -0.33 3.14 3.55 -0.41 -0.62 

High 
Distractors 

3.11 3.43 -0.32 1.56 2.35 -0.79 3.08 3.4 -0.34 -0.48 

Low 
Distractors 

3.30 3.23 0.07 1.80 2.35 -0.55 3.24 3.38 -0.14 -0.21 

1 HVT 3.03 11.80 -8.76 1.21 11.67 -10.46 2.91 11.42 -8.51 -9.24 

2 HVT 3.08 13.00 -9.92 1.27 11.69 -10.41 3.03 9.93 -6.90 -9.08 

Rural 4.88 5.42 -0.54 1.40 3.51 -2.11 3.10 4.20 -1.10 -1.25 

Urban 4.84 5.82 -0.98 2.10 2.65 -0.55 3.32 3.79 -0.47 -0.67 

Subjects 4.76 5.71 -0.95 2.88 5.00 -2.12 3.93 5.54 -1.61 -1.56 

Avg. 3.79 7.06 -3.27 1.79 5.38 -3.59 3.20 5.82 -2.62  
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Investigative Questions Answered 

Can a machine learning-based workload prediction model achieve a reasonable 

standard of cross-application error when applied to a diverse range of experimental 

contexts?  Unfortunately, none of the algorithms were able to produce models that could 

estimate workload for samples outside their training context as well as they could 

estimate workload for samples inside their training context; the null hypothesis in 

Equation 3 was rejected for nearly all cases. However, the regression tree models were 

able to cross-estimate with significantly less error than the trivial predictors for both 

Surveillance conditions (see Tables 3 and 5), as well as the 6→1 subjects configuration 

(Table 11). All three algorithms produced models that were able to cross-estimate with 

significantly less error than the trivial predictors for the egress route (urban versus rural) 

condition (see Table 9). 

Which algorithm is the best at cross-application workload estimation? The 

regression tree models had the lowest average cross-application error, followed by the 

ANN models and the linear regression models, respectively (see Table 13). On average, 

the ANN models exhibited the least difference between cross-application error and 

self-application error.  

Which algorithm is the best at estimating workload within a specific context? The 

regression tree models exhibited the lowest self-application error for all contexts (see 

Table 13). 

Are some contexts more generalizable than others? Yes, the high versus low 

distractors condition exhibited the least cross-application error, and the 1 versus 2 HVT 

condition exhibited the greatest cross-application error. 
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Can reducing the number of input features significantly decrease cross-application 

error? Yes, using a subset of the available input features significantly reduced cross-

application error in all but one context (urban versus rural egress route). Models utilizing 

EEG features had significantly lower cross-prediction RMSE than then models using all 

features the most often, in 8 out of 18 possible instances. Although none of the six 

subsets strictly dominated the full feature set in all contexts, the results indicate that the 

complexity of the data collection apparatus can be reduced while also improving 

cross-application accuracy. 

Summary 

 The algorithms were not able to construct models for this dataset that could 

estimate workload for samples inside of their training context and samples outside their 

training context with approximately equal accuracy. However, the regression tree models 

exhibited the most robustness in terms of minimal cross-application error, and were able 

to estimate workload across both Surveillance task conditions and human subjects within 

a reasonable limit. The regression tree models also exhibited the least error when training 

and testing on data from within the same context, making them the strongest candidate 

for developing accurate workload estimators for use in remotely piloted aircraft adaptive 

aiding systems. Reducing the set of physiological features simply based on how they 

were collected can significantly reduce cross-application error in some specific instances. 
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V.  Conclusions and Recommendations 

This chapter summarizes the significant findings derived from the conducted 

experiments. It contextualizes the role of this research effort within the field of human 

performance research, and makes recommendations towards how initial findings could be 

further expounded upon. 

Conclusions of Research 

 The regression tree algorithm was the most successful at accurately estimating 

workload across experimental contexts, followed by the artificial neural network (ANN), 

with linear regression consistently performing the worst in terms of cross-application 

RMSE. The experimental results indicate that dynamic context-switch scenarios that 

change the nature of what the operator is doing (task type, number of HVTs) are more 

difficult to cross-predict than static contexts that merely alter the task environment 

(screen fuzz, non-target distractors). Cross-application error can be significantly reduced 

in some instances using a select subset of input features as opposed to the set of all 

features, with the added benefit of reducing the cost and cumbersomeness of the required 

physiological data collection device.      

Significance of Research 

Identifying workload estimation algorithms that can accurately cross-predict 

workload across multiple experimental variables, as well as classes of variables that 

hinder cross-application, is absolutely essential for the future development of robust 

workload estimation models for use in on-line adaptive aiding systems. The findings of 

this work contribute to the larger body of human performance research concerned with 
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accurate machine learning-based workload estimation. This research effort has 

contributed valuable information towards the future development of adaptive aiding 

systems that will allow a single operator to adeptly control multiple remotely piloted 

aircraft. 

Recommendations for Future Research 

Future research into increasing the robustness of machine learning-based 

workload estimation models may include identifying specific means of reducing 

workload cross-application error across dynamic contexts to the same level as static 

contexts. This may be achieved by utilizing physiological inputs or algorithms not 

utilized in this research effort. It may be beneficial to design and conduct an experiment 

that could titrate the minimum amount difference in a context-switch condition that 

significantly affects workload cross-prediction error, since every context in this 

experiment had that effect.  

This research effort considered each sample independently and not as part of a 

time series. Future work might investigate if the trends identified here are maintained in a 

simulated on-line environment. Once truly robust workload estimation models have been 

developed, more nuanced on-line adaptive aiding systems that can take advantage of 

gradual allocation of automation can be implemented. 

Summary 

This research effort compared the ability of linear regression, regression trees, and 

artificial neural networks to create robust workload estimation models that could 

accurately cross-predict workload for a variety of experimental contexts. The results 
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indicate that the regression tree is the most adept at estimating workload within and 

across contexts and that dynamic contexts are harder to accurately cross-predict than 

static contexts. Reducing the set of input features based on means of measurement can 

significantly reduce cross-application error for certain contexts. The knowledge gained 

from this research effort will contribute to the ongoing development of accurate, robust 

workload estimation models that can effectively implement adaptive aiding strategies that 

may profoundly increase the capabilities of human operators in human-machine systems.  
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Appendix A: The Expanded VACP Scale  

Channel Value Descriptors 
VISUAL 0.0 

1.0 
3.0 
4.0 
4.4 
5.0 
5.1 
6.0 

No Visual Activity 
Visually Register/Detect (detect occurrence of image) 
Visually Inspect/Check (discrete inspection/static condition) 
Visually Locate/Align (selective orientation) 
Visually Track/Follow (maintain orientation) 
Visually Discriminate (detect visual difference) 
Visually Read (symbol) 
Visually Scan/Search/Monitor (continuous/serial inspection, multiple 
conditions) 

AUDITORY 0.0 
1.0 
2.0 
3.0 
4.2 
4.3 
6.0 
6.6 
7.0 

No Auditory Activity 
Detect/Register Sound (detect occurrence of sound). 
Orient to Sound (general orientation/attention)  
Interpret Semantic Content (speech, simple, 1-2 words) 
Orient to Sound (selective orientation/attention) 
Verify Auditory Feedback (detect occurrence of anticipated sound) 
Interpret Semantic Content (speech, complex, sentence) 
Discriminate Sound Characteristics (detect auditory differences) 
Interpret Sound Patterns (pulse rates, etc.) 

COGNITIVE 0.0 
1.0 
1.2 
4.6 
5.0 
5.3 
6.8 
7.0 

No Cognitive Activity 
Automatic (simple association) 
Alternative Selection 
Evaluation/Judgment (consider single aspect) 
Sign/Signal Recognition 
Encoding/Decoding, Recall 
Evaluation/Judgment (consider several aspects) 
Estimation, Calculation, Conversion 

FINE 
MOTOR 

0.0 
2.2 
2.6 
4.6 
5.5 
6.5 
7.0 

No Fine Motor Activity 
Discrete Actuation (button, toggle, trigger) 
Continuous Adjustive (flight controls, sensor control) 
Manipulative (tracking) 
Discrete Adjustment (rotary, vertical thumbwheel, lever position )  
Symbolic Production (writing) 
Serial Discrete Manipulation (keyboard entries) 

GROSS 
MOTOR 

0.0 
1.0 
2.0 
3.0 
3.5 
5.0 
6.0 

No Gross Motor Activity 
Walking on level terrain 
Walking on uneven terrain 
Jogging on level terrain 
Heavy lifting 
Jogging on uneven terrain 
Complex climbing  

SPEECH 0.0 
2.0 
4.0 

No speech activity 
Simple (1-2 words) 
Complex (Sentence) 

TACTILE 0.0 
1.0 
2.0 
4.0 

No tactile activity 
Alerting 
Simple discrimination  
Complex symbolic information  

(Archer & Adkins, 1999) 
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Appendix B: Expanded VACP Scale Adapted for Study   

Channel Value Descriptors 
VISUAL 0.0 

4.4 
6.0 

 
8.8 

10.4 
12.0 

No Visual Activity 
Visually Track/Follow (maintain orientation) 
Visually Scan/Search/Monitor (continuous/serial inspection, multiple 
conditions) 
Visually Track/Follow (maintain orientation) x 2 
Visually Track/Follow + Visually Scan/Search/Monitor  
Visually Scan/Search/Monitor x 2 

AUDITORY 0.0 
6.0 

No Auditory Activity 
Interpret Semantic Content (speech, complex, sentence) 

COGNITIVE 0.0 
4.6 
7.0 

11.6 
16.2 

No Cognitive Activity 
Evaluation/Judgment (consider single aspect) 
Estimation, Calculation, Conversion 
Evaluation/Judgment + Estimation, Calculation, Conversion 
Evaluation/Judgment + Estimation, Calculation, Conversion x 2 

FINE 
MOTOR 

0.0 
2.2 
2.6 
4.8 
5.2 
7.4 

No Fine Motor Activity 
Discrete Actuation (button, toggle, trigger) 
Continuous Adjustive (flight controls, sensor control) 
Manipulative (tracking) 
Discrete Adjustment (rotary, vertical thumbwheel, lever position )  
Serial Discrete Manipulation (keyboard entries) 

SPEECH 0.0 
2.0 

No speech activity 
Simple (1-2 words) 

Adapted from (Archer & Adkins, 1999) 
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Appendix C: Physiological Features List 

No. Name Category    No. Name Category 
1 F7 Alpha EEG 40 T3 Gamma EEG 
2 F8 Alpha EEG 41 Pz Gamma EEG 
3 Fz Alpha EEG 42 O2 Gamma EEG 
4 T3 Alpha EEG 43 F7 Delta EEG 
5 Pz Alpha EEG 44 F8 Delta EEG 
6 O2 Alpha EEG 45 Fz Delta EEG 
7 T4 Alpha EEG 46 T3 Delta EEG 
8 F7 Beta EEG 47 Pz Delta EEG 
9 F8 Beta EEG 48 O2 Delta EEG 
10 Fz Beta EEG 49 T4 Delta EEG 
11 T3 Beta EEG 50 F7 Theta EEG 
12 Pz Beta EEG 51 F8 Theta EEG 
13 O2 Beta EEG 52 Fz Theta EEG 
14 T4 Beta EEG 53 T3 Theta EEG 
15 F7 Gamma 1 EEG 54 Pz Theta EEG 
16 F8 Gamma 1 EEG 55 O2 Theta EEG 
17 Fz Gamma 1 EEG 56 T4 Theta EEG 
18 T3 Gamma 1 EEG 57 Heart Rate Cardiopulmonary 

19 Pz Gamma 1 EEG 58 Heart Rate 
Variability Cardiopulmonary 

20 O2 Gamma 1 EEG 59 Raw Pupil 
Diameter Pupilometry 

21 T4 Gamma 1 EEG 60 Raw Pupil 
Quality Pupilometry 

22 F7 Gamma 2 EEG 61 Filtered Pupil 
Diameter Pupilometry 

23 F8 Gamma 2 EEG 62 Filtered Pupil 
Quality Pupilometry 

24 Fz Gamma 2 EEG 63 Respiration 
Frequency Cardiopulmonary 

25 T3 Gamma 2 EEG 64 Respiration 
Amplitude Cardiopulmonary 

26 Pz Gamma 2 EEG 65 Blink Rate EOG 
27 O2 Gamma 2 EEG 66 Fixation EOG 
28 T4 Gamma 2 EEG    
29 F7 Gamma 3 EEG    
30 F8 Gamma 3 EEG    
31 Fz Gamma 3 EEG    
32 T3 Gamma 3 EEG    
33 Pz Gamma 3 EEG    
34 O2 Gamma 3 EEG    
35 T4 Gamma 3 EEG    
36 T4 Gamma EEG    
37 F7 Gamma EEG    
38 F8 Gamma EEG    
39 Fz Gamma EEG    

  (Courtice et al., 2012) 
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Appendix D: Levenberg-Marquardt Algorithm for Neural Network Learning  

Gradient descent is a simple method for artificial neural network learning (Hagan 

& Menhaj, 1994). Weights are updated according to 

∆𝒘𝒋𝒊 =  𝜼𝜹𝒋𝒚𝒊       (9) 

Where 

wji = the edge weight between nodes i and j 

η = the learn rate parameter 

δj = the local gradient of node j 

yi = the output of node i 

 
The local gradient δj depends on whether neuron j is an output node or a hidden node. In 
the first case 

𝜹𝒋 =  𝝋𝒋
′(𝒗𝒋(𝒏)) (𝒚𝒋(𝒏) −  𝒅𝒋(𝒏))     (10) 

Where 

φj′(vj(n)) = the derivative of the activation function of node j 

yj(n) = the output of node j given sample n 

dj(n) = the desired output of node j given sample n 

 
and in the case where node j is a hidden node, the local gradient is 
 

𝜹𝒋 =  𝝋𝒋
′(𝒗𝒋(𝒏))∑ 𝜹𝒌𝒌 (𝒏)𝒘𝒌𝒋(𝒏)     (11) 

Where 

φj′(vj(n)) = the derivative of the activation function of node j 

δk (n) = the local gradient of node k  
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wkj (n) = the edge weight between node k and node j 

 

The Newtonian method dispenses with the tunable learn rate parameter by 

assuming that all local gradients are functions of linearly independent weights, such that  

∆𝒘 =  −𝑯−𝟏𝜹     (12) 

Where 

w = the matrix of edge weights  

H = the Hessian matrix i.e. the second-order derivatives of the error function 
        with respect to the weights 

 
δ  = the local gradient vector  

 
The Gauss-Newton algorithm avoids the difficulty of calculating the second-order 

derivative of the error function by approximating the Hessian matrix using the Jacobian 

matrix such that   

𝑯 ≈ 𝑱𝑻𝑱
∆𝒘 =  −(𝑱𝑻𝑱)−𝟏𝑱𝒆

    (13) 

Where 

w = the matrix of edge weights 

H = the Hessian matrix  

J = the Jacobian matrix of all first-order partial derivatives of the total error 
       function 

 
e = the output error 
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The Levenberg–Marquardt algorithm can be considered a hybrid of the Gauss-

Newton algorithm and gradient descent, altering its function based on the local solution 

space. It ensures that the approximation of the Hessian matrix (JTJ) is always invertible 

by introducing another approximation.  

𝑯 ≈ 𝑱𝑻𝑱 +  𝝁𝑰
∆𝒘 =  −(𝑱𝑻𝑱 +  𝝁𝑰)−𝟏𝑱𝒆𝒊

     (14) 

Where 

H = the Hessian matrix  

J = the Jacobian matrix 

μ = the damping parameter 

I = the identity matrix   

 
When the combination coefficient is small, the Levenberg–Marquardt algorithm closely 

resembles the Gauss-Newton algorithm, which is faster and more accurate near a local 

minimum.  The damping parameter is decremented with each training step that decreases 

performance error and is incremented when a training step increases performance error. 

This research effort utilized an initial damping parameter of 0.001, a decrement factor of 

0.1, and an increment factor of 10.   
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